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A Generic Inner-Loop Control Law Structure for
Six-Degree-of-Freedom Conceptual Aircraft Design*

Timothy H. Cox† and M. Christopher Cotting‡

NASA Dryden Flight Research Center, Edwards, California, 93523

A generic control system framework for both real-time and batch six-degree-of-freedom
(6-DOF) simulations is presented. This framework uses a simplified dynamic inversion
technique to allow for stabilization and control of any type of aircraft at the pilot interface
level. The simulation, designed primarily for the real-time simulation environment, also can
be run in a batch mode through a simple guidance interface. Direct vehicle-state acceleration
feedback is required with the simplified dynamic inversion technique. The estimation of
surface effectiveness within real-time simulation timing constraints also is required.
The generic framework provides easily modifiable control variables, allowing flexibility in
the variables that the pilot commands. A direct control allocation scheme is used to
command aircraft effectors. Primary uses for this system include conceptual and
preliminary design of aircraft, when vehicle models are rapidly changing and knowledge of
vehicle 6-DOF performance is required. A simulated airbreathing hypersonic vehicle and
simulated high-performance fighter aircraft are used to demonstrate the flexibility and
utility of the control system.

Nomenclature
A = state matrix
ACT = actuator representation
B = control matrix
BEST = B-matrix estimation
C = output matrix
cv⋅ = rate of change of control variable with respect to time
D = control output matrix
deg = degree
dt = integration time step
g = nondimensional acceleration constant due to gravity
Kbw = control law bandwidth gain
Kin = control law stick input gain
M = Mach
msec = millisecond
NDI = nonlinear dynamic inversion
R = range to target aircraft, ft
SDI = simplified dynamic inversion
s = Laplace operator
sec = second
u = input vector representing control surface effector positions
ucmd = input vector representing control surface effector commands
x = state vector representing aircraft states
˙ x = rate of change of state vector with respect to time
                                                            
* The use of trademarks or names of manufacturers is for accurate reporting and does not constitute an official
endorsement, either expressed or implied, by the National Aeronautics and Space Administration.
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y = output vector representing aircraft output
˙ y = rate of change of output vector with respect to time
6-DOF = six-degree-of-freedom
α = angle of attack, deg

Subscripts
m = modeled parameter

 I. Introduction
HE preliminary stages of aircraft design typically are characterized by a highly conceptual approach. A set of
requirements are defined, and a system, aircraft mold line, or propulsion arrangement, depending on the

particular focus of interest, is established. Trade studies that use analysis and simulation of the total system are used
to determine the optimal design for meeting the requirements. Frequent configuration changes are typical in this
stage of aircraft design, which cause frequent and significant changes to various subsystem models, such as
aerodynamics, propulsion, actuators, and so forth. Unfortunately these aircraft design characteristics can complicate
the use of a six-degree-of-freedom (6-DOF) simulation. Changes to the various subsystem models often are
significant enough to require modification and possible redesign of the control laws. Frequent changes to the
models, however, allow little time to make these control law modifications.

Developing a generic set of control laws that are independent of some of the most significant influences on
aircraft dynamics, such as aerodynamics and propulsion, could eliminate part of the problem of using 6-DOF
simulation in the preliminary design phase. These control laws could allow a 6-DOF simulation as a rapid
prototyping tool, supplying usable control laws with minimal modification for any aircraft configuration. The
simulation could then quickly be adapted for typical preliminary design phase tasks such as actuator bandwidth
sizing, aerodynamic uncertainty sensitivity studies, performance trade studies, and mission planning.

Dynamic inversion is a control law methodology that could be developed into the desired generic set of control
laws. Figure 1 shows the utility of this methodology across four linearized aerodynamic aircraft models (ranging
from a lifting body (X-38 aircraft) to fighter aircraft to airbreathing hypersonic vehicles) across four flight
conditions (ranging from subsonic to hypersonic). Figure 1 demonstrates that the pitch rate response to a given stick
input is the same, regardless of the aircraft type or flight condition. This phenomenon occurs because the dynamic
inversion methodology incorporates an aerodynamic model of the aircraft. The model, which can be stable or
unstable, is inverted and used to cancel the bare airframe dynamics, allowing the control law designer to define the
desired dynamics. In this sense the control laws and the desired vehicle response are independent of the
aerodynamics, provided that the model used in the control law algorithm is valid.
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Figure 1. Pitch rate response of four linearized aerodynamic aircraft models.
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Researchers at the NASA Dryden Flight Research Center (Edwards, California) recently evaluated a set of
generic dynamic inversion control laws for a 6-DOF simulation environment. Two types of dynamic inversion
methodologies were investigated. Reference 1 discusses one type, nonlinear dynamic inversion (NDI), which
incorporates full-state nonlinear equations2 into the control law architecture. Although dynamic inversion is
primarily an inner-loop function, outer-loop functions such as guidance in relation to the NDI were investigated. The
other type of dynamic inversion methodology is a simplified approach to NDI, described in reference 3 as simplified
dynamic inversion (SDI). This approach uses state acceleration feedback and aerodynamic surface effectiveness
estimates to perform the dynamic inversion cancellation of a full nonlinear aerodynamic model. This approach was
extended in the NASA Dryden investigation with the addition of a feature that allows rapid and easy modification to
the control variables that the pilot commands. The primary focus of the SDI investigation was inner-loop dynamics
and pilot-in-the-loop control.

This report describes the generic implementation of SDI into 6-DOF real-time simulations of an airbreathing
hypersonic vehicle at Mach 6, and a twin engine, high-performance fighter aircraft at a subsonic flight condition.
Included in the generic control law architecture is a direct allocation scheme to command aircraft effectors. With
minimal change to the control laws, the generic utility of SDI is demonstrated through a comparison of the inner-
loop dynamics between the two simulations. The ability to easily modify control variables that the pilot commands
is demonstrated. Algorithm modifications necessary to run the simulation within real-time timing constraints, and
the implications of these modifications on flying qualities, are discussed. A research pilot’s handling qualities
evaluation of the fighter aircraft simulation also is presented.

 II. Simulation and Aircraft Description
NASA Dryden has developed a common simulation platform that is used for all 6-DOF simulations originating

at the center. It is capable of simulating wide ranges of aircraft and includes basic analysis tools integrated into the
simulation environment. The simulation platform can run in both real-time and batch modes to allow
pilot-in-the-loop evaluations and analysis from the engineer’s desktop. Pilot-in-the-loop evaluations use a
fixed-base, real-time simulation with standard stick and rudder pedal inceptors for pilot controls, head-up display,
cockpit flight instruments, and external real-time visual imagery. Round-Earth nonlinear equations of motion are
utilized. A standard architecture for subsystems is included in the simulation. The control system described in this
report uses the standard architecture so that as new simulations are developed, modifications to the control system
are not necessary. Specifically, the control laws require common access to the simulation aerodynamic database.

Two distinctly different aircraft simulations were used to test the utility of the control system. An airbreathing
hypersonic vehicle in the conceptual design phase and a well-established twin-engine, supersonic fighter aircraft
were evaluated. Both aircraft are capable of pilot-in-the-loop simulation. The hypersonic aircraft was evaluated at
approximately Mach 6, at which point the simulation models are relevant. The aircraft is controlled in the
longitudinal and lateral axes by symmetrically and differentially deflected wings, respectively. Directional control is
maintained by symmetrically deflected rudders. Interestingly, in airbreathing hypersonic vehicles, the shape of the
fuselage acts as an inlet and a nozzle for the engine. This unique characteristic causes a coupling between engine
thrust and pitching moment.

The fighter aircraft was evaluated across the full flight envelope (subsonic, transonic, and supersonic) at normal
and unusual attitudes to extensively test the robustness of the control system. The aircraft has 12 effectors consisting
of an inboard and outboard leading edge flap on each wing, ailerons, a trailing edge flap on each wing, a rudder on
each of the twin tails, and stabilators. Table 1 summarizes the basic characteristics of each aircraft.

Table 1. Comparison of basic aircraft characteristics.

Fighter
 aircraft

Hypersonic
aircraft

Total weight, lb 32,000 4,800

Length, ft 56 16

Reference wing area, ft2 400 74

Speed range, Mach 0.3–1.8 4–8
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 III. Control Law Architecture
The objective was to design a control law framework that minimizes the number of changes required to

implement the control law software in any given simulation. Furthermore, gain changes should be minimized when
simulation models are updated during conceptual or preliminary design. To accomplish these objectives, dynamic
inversion was chosen as a basic building architecture for the control system. A control allocation scheme was
implemented to allow for the use of any number of control effectors.

Figure 2 provides an overview of the control law architecture. The control system is broken into four major
sections: the input and output interfaces, SDI control section, control allocator, and B-matrix estimation (BEST)
algorithm. The input and output interfaces are used to connect the control system with the simulation and to access
simulation models required by dynamic inversion. All required simulation parameters, outputs from the control
system, and external commands must pass through these interfaces. The interfaces were established in this manner
to allow the control law subroutines to be used with any NASA Dryden simulation with minimal changes. The SDI
control allocator and BEST algorithm are described in detail in the remainder of this section.

Interface 
from

simulation

Dynamic 
inversion

Control
allocation

Interface to 
simulation

BEST

BEST 
interface

BEST 
interface

Simulation
model

External 
commands

Output interfaceInput interface

Figure 2. Overview of generic control law architecture.

A. Simplified Dynamic Inversion (SDI) Background
The objective of dynamic inversion is to calculate a control surface deflection such that the bare airframe

dynamics are cancelled, allowing the control system designer to establish the desired dynamics. The following
equations are used to calculate the control surface deflection, where m designates the state space representation of
the modeled bare airframe, and Dm is assumed to be zero for simplification:

˙ x = Am x + Bm ucmd (1)

y = Cm x (2)

The dynamic inversion philosophy is that the desired dynamics ( cv⋅ ) equals the aircraft response, so

cv⋅ = ˙ y = Cm ˙ x (3)
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Substituting the equation for ˙ x  (Eq. (1)) into Eq. (3) yields

cv⋅ = Cm Am x +Cm Bm ucmd (4)

Then, applying the surface command through the actuator representation, ACT,

u = ACT ucmd[ ] (5)

Solving for ucmd in Eq. (4) and substituting it into Eq. (5) yields the following:

u = ACT {[Cm Bm ]–1 [cv⋅ −Cm Am x]} (6)

This equation represents the part of the dynamic inversion method that calculates the control surface deflections
to cancel the bare airframe dynamics, assuming invertible matrices. If the modeled dynamics accurately represent
the actual aircraft (that is, A = Am , B = Bm , and C = Cm ), the realized aircraft dynamics are reduced to

y = cv⋅ dt∫ (7)

Figure 3 illustrates the dynamic inversion approach and shows the reduction of the aircraft dynamics described in
Eq. (7).

Aircraft

x = Ax + Bu
    x = ∫ x dt

Desired
dynamics

ACT

Actuator

[Cm Bm]–1

[Cm Am]

xucmd ucv

1 / S

C
y

–

+Stick
• •

•

Figure 3. Dynamic inversion approach.

The SDI approach3 achieves the same equation for control surface deflection (Eq. (6)) through the use of
acceleration and surface position feedbacks instead of the modeled A matrix. Figure 4(a) illustrates the SDI
approach. This diagram can be rewritten as shown in Fig. 4(b), and by means of that diagram, the control surface
calculation required to cancel the airframe dynamics is

ucmd = [Cm Bm ]−1 [cv⋅ − ˙ y ]+ u (8)

˙ y = [C A] x + [C B]u (9)
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Figure 4. Simplified dynamic inversion (SDI) concept.

Substituting the equation for ˙ y  (Eq. (9)) into Eq. (8) yields

ucmd = [Cm Bm ]−1{cv⋅ − [C A] x − [C B]u} + u (10)

Assuming that the modeled aircraft is accurate ( A = Am , B = Bm , C = Cm ), the [Cm Bm ]−
1 [C B ] term becomes

the identity matrix, and Eq. (10) reduces to

ucmd = [Cm Bm ]−1 [cv⋅ −Cm Am x] (11)

Substituting Eq. (11) into the equation for surface position, Eq. (5) (shown in Fig. 4(b)), yields the same equation
for the control surface deflection as calculated for the dynamic inversion approach (Eq. (6)).
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B. Simplified Dynamic Inversion (SDI) Implementation
Figure 5 illustrates the SDI architecture implemented into the three axes for the simulations. Although the

inversion step shown in Fig. 5 was implemented within the control allocator, it is included here to reflect Eq. (11).
The diagram also exhibits the architecture for tuning desired dynamics, represented by a stick sensitivity gain (Kin)
and a bandwidth gain (Kbw). Adding control variable feedback into the architecture allowed relatively easy and quick
modification to the control system command type. For example, in the longitudinal axis, nulling the control variable
feedback allowed the pilot to command rates. Conversely, selecting angle of attack as the control variable allowed
the pilot to make command inputs to angle of attack. In the longitudinal axis, selectable control variables were pitch
rate, pitch attitude, normal acceleration, vertical speed, flightpath, rate of change of flightpath, and angle of attack.
In the lateral axis, selectable control variables were bank angle, body-axis roll rate, and stability-axis roll rate. In the
directional axis, the selectable control variables were sideslip, sideslip rate, lateral acceleration, and yaw rate.
Figure 6 shows the results of a rudder pedal step input for the four directional control variables. The default control
variables were pitch rate, body-axis roll rate, and lateral acceleration.
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Pilot
input

Kbw+
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+
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+

–

Control variable

Moment
command
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Control allocation
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Desired dynamics

ACT Aircraft

+

+
•

Figure 5. Simplified dynamic inversion (SDI) as implemented in the generic control laws.
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Increasing the bandwidth gain, Kbw, increased the response time of the controller, but it required more rate from
the actuator and provided more oscillatory responses. Figure 7 shows the effect for the lateral acceleration control
variable when step inputs with increasing bandwidth gain were applied. Table 2 lists the nominal gains and control
variables for each axis in both simulations.

Output from the SDI is a commanded moment for each axis. Although the SDI technique generally requires a
surface effectiveness estimate to convert the commanded moment to a surface position command, this step was
relegated to the control allocation algorithm where the B matrix was estimated.
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Figure  7. Responses to step inputs with varying bandwidth gains.

 

Table 2. Nominal gains and control variables.

Axis Control variable      Kin Kbw

Pitch Pitch rate      1.0 6.0

Roll Roll rate    10.0 6.0

Yaw Sideslip      0.05 1.0
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C. Control Allocation
The control allocation section of the control system is an algorithm taken from reference 4. The control allocator

uses a model matching technique to compute a set of effector commands from a moment command input. The
controller requires a model input for the aircraft, which is accomplished with a BEST algorithm. A change in
nondimensional moment from the current aircraft state is commanded as input in addition to a control effector matrix
and effector limits. The allocator then determines a change in effector output command, which is then summed with
the current aircraft effector position to create a new effector position command to the simulation actuator model.

D. B-Matrix Estimation (BEST) Algorithm
The BEST routine outputs a linearized estimate of the effectiveness of each control effector at the current state in

time as a function of control deflection. The algorithm works by cycling through all effector positions and adding a
positive and negative increment to the current value of each position for a given frame. For each increment the
aerodynamic model is called, and the differences in pitch, roll, and yaw aerodynamic moments are calculated. The
difference in each aerodynamic moment is essentially an estimate of the control surface effectiveness for that
effector in that frame.

Effort was devoted to developing the BEST routine such that it would be compatible with current simulation
architecture and fit within a real-time simulation frame. To determine an appropriate balance between accuracy and
speed, modifications to the algorithms were attempted. Initially the BEST routine updated the effectiveness for all
surfaces in a given frame. Computational requirements for this approach were too stringent, however, to fit within
the simulation integration step for the fighter aircraft simulation. For a point of reference, the fighter aircraft
simulation ran simulation and visual graphics software on a SGI ONYX 2 system (Silicon Graphics, Inc.,
Mountain View, California) configured with eight MIPS Technologies R12000™, 400-MHz processors (MIPS
Technologies, Inc., Mountain View, California). Computational time modifications were implemented in the
following order to reduce requirements:

1) Speed enhancements to the code
2) BEST update for one surface for each simulation frame
3) Assumptions on surface deflections to reduce to eight collective effectors
4) Perform half-step increments, instead of a positive and negative increment, to obtain effectiveness estimates

To limit the control surfaces to eight collective effectors, the following assumptions were imposed: slave the
inboard and outboard flaps, limit the rudder to symmetric deflections only, and limit the aileron to asymmetric
deflections only. Half-step estimates, in which control surface effectiveness is estimated by means of a step in only
one direction, save computations by reducing the calls to the aerodynamic model, but they increase estimation
errors. The direction is based on whether the rate of change of the nominal aerodynamic moment is positive or
negative. If the moment is moving in a positive direction, then the BEST algorithm uses an increment that produces
a positive moment. If it is moving in a negative direction, then the BEST algorithm uses an increment that produces
a negative moment. A flag was implemented in the simulation to toggle between half-step estimates and full-step
estimates, which uses the positive and negative increments.

Despite efforts to maintain computations within the simulation integration step, frame overruns continued. An
additional effort to fit the computations within the simulation step was successful. Splitting the execution of the
visual graphics and the simulation modeling onto two computers reduced the overall computational time of the
simulation and allowed the entire computation to fit within the simulation integration step. The additional computer,
a Sun system (Sun Microsystems, Inc., Santa Clara, California) configured with four SPARC® V9, 900-MHz
processors (SPARC International, Inc., Campbell, California), ran the simulation software, and the SGI® system ran
the visual graphics. Control law changes made to the fighter aircraft simulation for timing considerations were then
incorporated into the hypersonic aircraft simulation to maintain code consistency.

Figure 8 compares the actual computational time to the simulation frame rate requirement. The most significant
time savings resulted from surface modifications, which included the BEST update for one surface for each
simulation frame, and the surface assumptions that reduced the number of effectors (steps 2 and 3 described
previously).
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Figure  8. Comparison of actual computational time to simulation frame rate.

E. Applicability to the Flight Environment
Although the purpose of this report is to discuss the application of the SDI approach to the simulation

environment, two significant challenges that arise when the SDI method is applied in flight should be mentioned.
The first challenge is to estimate the surface effectiveness. To estimate the surface effectiveness, either an onboard
aerodynamic model or a real-time parameter estimation technique must be implemented in the SDI algorithm. An
onboard aerodynamic model would have to be simplified to function in a real-time environment and thus is
susceptible to errors. A parameter estimation technique would require a significant developmental process to verify
that it will accurately function in a real-time environment. The second challenge is to obtain acceleration feedback.
Whether rotational accelerometers can produce a signal that is accurate, clean, and reliable enough for use as a
feedback signal in a control law is not known. Data from embedded global positioning systems and inertial
navigation systems, however, potentially could provide a clean, accurate signal. These challenges hinder the
application of the SDI method to the flight environment. Reference 5 discusses efforts to develop a similar SDI
method that might not be subject to these challenges.

 IV. Evaluation of Handling Qualities
To determine whether general handling quality deficiencies of the generic control laws exist and to demonstrate

the application of the control laws for representative piloting tasks, the handling qualities of the fighter aircraft
simulation were investigated by a research pilot. Three tasks, representative of fighter tasks, were defined for this
purpose: offset acquisition, air-to-air tracking, and offset landing. The offset acquisition and air-to-air tracking tasks
were up-and-away tasks. The offset landing task was an approach and landing task in a power approach configuration.
General task performance guidelines were used so that the pilot could provide insight on the handling qualities.

During the offset acquisition task, a visual target was provided at the same altitude, heading, and airspeed as
those of the simulation aircraft, at a range of 1000 ft. The task was conducted with the target aircraft at either a
lateral or vertical offset. Figure 9 shows the starting condition (from the pilot’s perspective) for the lateral offset.
The piloting task was to acquire the offset target and hold it within the inner of two concentric pippers for 3 sec.
After 3 sec the pipper would turn from green to red and the target aircraft would offset to the opposite side, allowing
the pilot to reacquire it. The desired performance guideline was to acquire the target aircraft within 3–4 sec from the
time of the offset with two or less overshoots.

The air-to-air target tracking task had the same setup as that of the offset acquisition task, but without the offset.
The target aircraft would enter a 3-g turn and hold it for 45 sec, at which time the aircraft would reverse direction.
The piloting task was to acquire the target aircraft within the inner pipper.
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The offset landing task began near the final approach with the airplane (configured for a power approach) on the
same heading as that of the runway but offset by approximately 300 ft. The pilot would maintain constant altitude
until the pipper flashed. At this time the pilot would position the aircraft on final approach with a glide slope of 3°,
while still maintaining the offset. When the pipper flashed a second time the pilot would correct to the runway
centerline and attempt to touch down with the main gear on an aim point located on the runway. Figure 10 shows
approximately the pilot perspective during the correction. An inner box on the runway, measuring ± 250 ft from the
aim point and ± 25 ft from the centerline, was used as a guideline for desired performance. An outer rectangle on the
runway, measuring 250 ft before and 750 ft after the aim point, and ± 50 ft from the centerline, was used as a
guideline for adequate performance. Similar maneuvers were performed in a previous research project and are
described in detail in reference 6.

Figure 9. Offset acquisition task: starting condition with the lateral offset.

Figure 10. Offset landing task correction.
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 V. Results
This section examines the utility of the generic control laws based on comparisons of the responses of both simulations

to open-loop inputs. A pilot opinion regarding the control laws and the ability to perform representative fighter
tasks is presented. Of interest is the effect of BEST estimates on flying qualities when the half-step algorithm is used.

A. Open-Loop Input Evaluation
In theory the dynamic inversion control laws should produce output time histories for both simulations that are

nearly identical for a given step input. To evaluate this SDI characteristic, the same step input was applied to both
simulations in each of the three axes. The hypersonic aircraft simulation was conducted at Mach 5.78, and the
fighter aircraft simulation was conducted at Mach 0.6. The control variables for the two simulations were body-axis
roll rate, pitch rate, and sideslip. Nominal gains were used in both simulations. Figure 11 shows a time history
comparing the control variables for each axis step input for the two simulations.

Note that the control variable responses are very similar despite the considerable disparity in aerodynamic
configuration and flight condition. These results imply that the SDI technique worked as intended and the bare
airframe dynamics were appropriately cancelled. For the pitch rate, the hypersonic aircraft simulation had a slightly
slower response time. This response was traced to the associated coupling between engine thrust and pitching
moment, a characteristic of hypersonic airbreathing engines. A second set of step responses from the hypersonic
aircraft simulation, without the engine model pitching moment contribution, was recorded (Fig. 11). This pitch rate
response improved the match with the fighter aircraft response.

In addition to the step inputs, frequency sweeps were applied to both simulations. The same conditions and
control variables used in the step inputs were used in the frequency sweeps. The sweeps ranged in frequency from
0.1 rad/sec to 50 rad/sec. Pitch-rate-to-stick and roll-rate-to-stick frequency responses were generated for the two
simulations. Figures 12 and 13 compare the frequency responses for pitch rate and roll rate, respectively. The
frequency responses generally resemble first-order responses. From a handling qualities perspective a first-order roll
rate response is favorable. For the pitch axis, however, a first-order pitch rate response might be less favorable.

Good agreement exists between the two simulations for both the pitch rate and roll rate frequency responses to
approximately 10 rad/sec. At that point the comparisons show some deviations, particularly in the phase plot. To
determine where this mismatch originates, the phase difference between the left wing actuator of the hypersonic
aircraft and the left stabilator actuator of the fighter aircraft was added to the phase of the fighter aircraft frequency
response. The results indicate a much improved frequency response match, as shown in Figs. 12 and 13, which
implies that the phase difference primarily is a result of differing actuator models between the two simulations.

To document the stability margin robustness for this type of controller, a frequency sweep was inserted into both
simulations at the inner-loop error signal for each axis.7 Open-loop frequency responses were then generated.
Figure 14 shows the pitch axis frequency response with the stability margin calculation superimposed. The
similarity in the frequency responses between the two aircraft is noted for frequencies below the actuator break
frequency. The roll and yaw axes frequency responses (not shown) exhibit similar characteristics. The gain and
phase margins for each axis in the two simulations show a large degree of robustness (table 3).

This open-loop evaluation emphasizes the generic utility of the SDI control laws. Two distinctly different
aircraft models were manipulated to provide the same responses with a significant amount of stability robustness.

 Table 3. Comparison of stability margins for the
two simulations.

Axis
Fighter aircraft
(gain and phase)

Hypersonic aircraft
(gain and phase)

Pitch 10 dB / 70° 17 dB / 85°

Roll 21 dB / 70° 16 dB / 80°

Yaw 30 dB / 70° 32 dB / 90°
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Figure 11. Comparison of fighter and hypersonic aircraft responses to a step input.
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Figure 12. Comparison of pitch-rate-to-stick deflection frequency responses.
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Figure 13. Comparison of roll-rate-to-stick deflection frequency responses.
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Figure  14. Comparison of pitch axis open-loop frequency responses.

B. Pilot Evaluation of Handling Qualities
To evaluate the handling qualities of the SDI control laws for representative fighter tasks, a research pilot flew

the three tasks described previously (offset acquisition, air-to-air tracking, and offset landing). With the exception of
the directional control variable, the control variables and gains were essentially nominal. For most of the maneuvers
evaluated by the pilot, the directional control variable was sideslip.

The pilot commentary for the offset acquisition task indicates that for the lateral and vertical offsets, the airplane
was clearly satisfactory without need for improvement. The following comments concerning the lateral offset task
are representative:

Airplane is easily moved to acquire inner circle in about 3 seconds. If you’re more aggressive to about 1.5 to 2 seconds
then you may generate one overshoot. If you are less aggressive in the 3 or 4 second range it is very easy to generate no
overshoots. No PIO tendencies, no coupling between pitch and roll.

For the air-to-air tracking task, however, the comments are not as favorable. Attempting to fine track caused
directional oscillations in the pipper that created difficulty in stabilizing the pipper on the target aircraft. The
difficulty noted by the pilot is apparent in the time histories (Fig. 15). The pipper acquisition marker represents the
status of the target aircraft relative to the inner pipper. When the target was inside the pipper the marker toggled to a
value of two. In this maneuver the pilot was continually attempting to track the target aircraft, as shown in the
oscillatory lateral stick time history. Sideslip oscillations were induced, which occurred at a frequency of
approximately 1.25 rad/sec, and caused the pipper to swing back and forth through the target. The oscillations
created difficulty for the pilot in stabilizing the pipper on the target. As a result, the target was acquired for only
brief segments of time. The maneuver was repeated when the directional control variable was switched to lateral
acceleration. The following comments resulted:

Much better characteristics. Still a slight tendency for the pipper to slide, as noticed when using beta feedback, but task is
much more doable. Similar to task when using [the standard airplane] control laws.
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Figure 15. Time history of air-to-air tracking task with sideslip as the control variable.

The pilot commentary indicates that the aircraft was satisfactory without improvement with only some minor
deficiencies. The ability to perform the task significantly improved. The acquisition marker (Fig. 16) indicates that
the target was inside the inner pipper for a longer duration than when the sideslip control variable was used.
Furthermore, this sideslip time history shows much better damping than the sideslip time history from Fig. 15.
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Figure 16. Time history of air-to-air tracking task with lateral acceleration as the control variable.

Comments concerning the offset landing task, when lateral acceleration was used as the control variable, indicate
that the directional characteristics were similar to those of the air-to-air tracking task. In this task, however,
considerable effort was necessary to perform the task within adequate guidelines.
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Overall, the pilot was able to perform the representative fighter tasks. Through this evaluation, the utility of the
SDI control laws was validated, and the quality of the response characteristics of the SDI control laws was
documented. Furthermore, the usefulness of easily modifiable control variables (to fine tune the handling qualities)
was demonstrated.

C. Implications on Flying Qualities Resulting From Half-Step B-Matrix Estimates
A feature of the SDI control laws is the ability to use half-step B-matrix estimates to save computational time.

This feature had been considered beneficial for cases in which using a full-step estimate would cause the real-time
computational time to exceed the integration timeframe of the simulation.

Using half-step estimates, however, would introduce errors into the B-matrix estimates, especially during highly
dynamic maneuvering, and thus could produce some negative implications on flying qualities. Figure 17 shows the
response of a frequency sweep, ranging from 0.1 to 50 rad/sec, in the pitch axis in which full-step and half-step
estimates were used. A transient can be seen in the angle-of-attack data at approximately 55 sec (corresponding to a
frequency of approximately 44 rad/sec). This transient exemplifies the type of undesirable flying characteristic that
can result from the half-step B-matrix estimation. These undesirable characteristics were even more dramatic when a
divergent oscillation developed while the air-to-air tracking task was executed with the half-step estimation.
Therefore, half-step estimation of the B matrix is recommended only when the real-time requirement of the
simulation cannot be met, in which case only moderate maneuvering should be performed.
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Figure 17. Comparison of frequency sweep responses in which half-step and full-step estimates were used.
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 VI. Conclusions
Researchers at the NASA Dryden Flight Research Center developed a set of generic dynamic inversion control

laws for a six-degree-of-freedom simulation environment to aid in aircraft design in the preliminary, conceptual
stages. The generic implementation utilizes a simplified dynamic inversion (SDI) approach, which uses state
acceleration feedback and surface effectiveness estimates to perform the dynamic inversion cancellation of the bare
airframe dynamics. The SDI control laws primarily were developed for the real-time, pilot-in-the-loop simulation
environment, and some modifications to the algorithm were necessary for the simulation to run within real-time
timing constraints. A feature was added to the SDI algorithm that allows quick and easy modification to the control
variables that the pilot commands.

The SDI algorithm was implemented in two simulations of two distinctly different aircraft: an airbreathing
hypersonic vehicle and a high-performance twin engine fighter aircraft. With minimal changes to the control laws,
the generic utility was validated by demonstrating, for a given open-loop input, a match between the hypersonic
aircraft simulation response at Mach 5.78 and the fighter aircraft simulation response at Mach 0.6. A stability
analysis for the two simulations indicates that the control laws are robust. A research pilot considered the handling
qualities of the fighter aircraft simulation closed-loop dynamics to be satisfactory without improvement for
up-and-away tracking tasks. Although considerable effort was required, the pilot was able to perform offset
approach and landing tasks within adequate guidelines. Through this evaluation, the ability to perform representative
fighter tasks was demonstrated, and the ability to quickly modify control variables was proven to be useful for
fine-tuning the handling qualities. One modification to the algorithm, however, which estimated surface
effectiveness based on a technique designed to reduce computational time, produced undesirable flying qualities.
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